ZenDag
0.1

Getting Started:

  • ZenDag Quickstart: Your First Pipeline
  • Automatic DAGs & DVC Caching with ZenDag
  • Config Composition & Reusable Components with ZenDag
  • Sharing Data & Models: DVC Versioning with Intake Catalogs (using fsspec)
ZenDag
  • ZenDag Documentation
  • View page source

ZenDag Documentation

Welcome to the official documentation for ZenDag!

ZenDag is a Python framework designed to streamline Machine Learning experimentation workflows by integrating Hydra, DVC, and MLflow.

Getting Started:

  • ZenDag Quickstart: Your First Pipeline
    • Prerequisites
    • Step 1: Write Your Python Stage Function
    • Step 2: Define Function Call as Configuration (Hydra-Zen)
    • Step 3: Select Configs & Configure Pipeline (configure.py)
    • Step 4: Run the Pipeline with DVC
    • Data Versioning in Action
    • Conclusion
  • Automatic DAGs & DVC Caching with ZenDag
    • Building a Multi-Stage Pipeline
    • Updated configure.py
    • Running configure and Inspecting the DAG
    • Running the Pipeline & DVC Caching
    • Conclusion
  • Config Composition & Reusable Components with ZenDag
    • Example: A Reusable File Logger
    • Conclusion
  • Sharing Data & Models: DVC Versioning with Intake Catalogs (using fsspec)
    • Recap: DVC for Versioning Artifacts
    • Step 1: Push DVC Data to a Remote
    • Step 2: Tag a Specific Version in Git
    • Step 3: Install Intake and fsspec DVC support
    • Step 4: Creating an Intake Catalog (catalog.yaml) with fsspec
    • Step 5: Using the Intake Catalog (fsspec version)
    • Benefits of the fsspec Approach
Next

© Copyright 2025, Quentin Febvre.

Built with Sphinx using a theme provided by Read the Docs.